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Wave front propagation failure in an inhomogeneous discrete Nagumo chain:
Theory and experiments
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The phenomenon of wave propagation failure in a discrete inhomogeneous Nagumo equation is investigated.
It is found that the propagation failure occurs not only for small coupling coefficients but as well for an abrupt
change of the interelement coupling. The investigation includes the study of the phase space of the system,
numerical simulations, and real experiments with a nonlinear electrical lattice.
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I. INTRODUCTION wide class of initial conditions. In particular, the initial con-
ditions defining in{Z,R} kink-shape distributions belong to
Systems composed of a large number of ordered in spadéis class.

interacting active subsystems, that is, active networks, arise
in the Study of many Spatiotempora| phenomena in physiCS, The existence of wave propagation failure is a character-
chemistry, biophysics, technique, and so on. Take, for inistic feature of the discrete Nagumo equation, since this phe-
stance, arrays of Josephson junctiphl arrays of coupled Nnomenon does_ not occur in the continuous version of the
lasers[2], chains of coupled chemical react¢8, nonlinear ~Nagumo equation.
synchronization arrayp4], assemblies of biological oscilla- ~ However, one might wonder how spatial inhomogeneities
tors [5], etc. The prob]ems of pattern formation and propa_in a lattice described by a continuous or discrete NagUmO
gation of nonlinear waves in active networks are widely in-equation may influence the propagation failure conditions.
vestigated, as, for example, wave front dynamics in discretdlamely, in this paper, we consider an inhomogeneous

bistable systemg5—11]. Nagumo equation consisting in two homogeneous Nagumo
These systems are often modeled by the following weliSubsystems connected at siteand described by the follow-
known discrete Nagumo equations: ing set of coupled nonlinear equations:
V.o=d(V. ..—2V.+V. , = _ dv, _
Vi=d(Vj.1—2V+V_)+f(V)), j=12,..m 1(1) d_tj:dl(vj+l_2Vj+ijl)+f(vj)- j=1.2,..m-1
with the dot accounting for the time derivatijedefininga (¢ n
space lattice pointj(eZ) or discrete space coordinatd, g =d1(Vimn-1= Vi) + do(Vin 1= Vin) +F(Vin), 2
being the coupling coefficient, while the cubic functib(V)
= oven Mg (Vi 1—2Vi+V_)+(V))
f(V)=V(V—1)(a—V), O<a<L. TR A T i
The basic properties of Eql) are the following: j=m+1m+2,...N.

(i) There exists a critical value of the coupling coefficient,
d=d*(a), below which, i.e.d=d*(a) the wave fronts fail In the system(2), coupling coefficients between cells take
to propagate, this phenomenon being known as the wavewvo valuesd; andd,, according to the index defining a
front propagation failuré6,12,13. space poinf=1,2,...N.
(ii) The propagation of wave front&inks and antikinks We note that in the special cadge=d,=d, the systent2)
is possible only ford>d* (a), the fronts emerging from a simply becomes an homogeneous discrete Nagumo equation
(1) with the above described properties.
For the boundaries of the systd®), we impose zero-flux
*Electronic address: smorfu@u-bourgogne.fr or Neumann conditions, that is, fge=1 or j=N, respec-
"Electronic address: nekorkin@rf.unn.runnet.ru tively,
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Vl(t):VZ(t) and VN(t):VN—l(t) (3) Vm+ 1 Vv

Such model, for example, plays an important role in under- 1 +
standing the action potential propagation in inhomogeneous |
cardiac tissue$14,15 and in inhomogeneous nerve fibers . £
[16—18. Indeed, in myelinated nerve fibers the membrane /"i/ /H 7'
activity is localized mostly in Ranvier nodes coupled by my- AL — - |7L
elinated (passive parts of the fiber. The inhomogeneities ql’ Si/ /

may be induced by variations of the diameter, changes of S0
electrical properties, branching, and so on. Here, we will ; ¥ —>V
consider first the case of an inhomogeneous discrete Nagumc r

equation, then an inhomogeneous continuous one, both de-
scribing the propagation of excitation in a fiber with varying
diameter. Note that our contribution based on phase planeF

FIG. 1. Qualitative representation of regién

ence, it is a gradient one and only steady states can exist

analysis concerning the inhomogeneous continuous cas ;
y g g 20] in the phase spade™ of the system(2).

completes the study presented in Ra9].
The main result presented in this paper is the following:
considering a kink propagating in the first Nagumo sublattice B. Absorbing region and stationary kink pattern

with coupling d,, the propagation through the interface  por getermining the positions of the steady states of the

separating the two sublattices will be possible only if thegystem(2), let us introduce in phase space the regibauch
coupling coefficiend, in the second sublattice stays in the asQ={V:0=V,<1,j=12,.N}.

range [dire(dy,a),dg,(d1,a)]. The paper is organized as By analogy with referenced1,21], we can prove that all
follows. Section Il is devoted first to theoretical studies in atrajectories of Syster(Q) with initial conditions outside of)
purely discrete inhomogeneous system, where specififend to it. Consequently, all steady states of syst@yrbe-
(dy,d;) sets allow to exhibit propagation failure. We show |ong to region(). As a result, we can consider syste@)
then that the pinning of the front wave may also be possiblenly in region) and hold that

even in a continuous inhomogeneous system. In thisdgse .

vanishes to 0, and an analytical relation fifi,(d,,a) is OsVj<1 for t>0 and j=1.2,..N. (6)
given. In Sec. lll, we describe the experiments and present ) ) ) ) .

the results concerning the propagation failure in an inhomol-€t Us now give more precisely invariant domains for the
geneous system, either in the discrete or in the continuougystem(2). From now on, and for a sake of clarity we choose
case. The shape of the pinned wave is given in a specifif’® parametea to be smaller than 1/&he case 1/Za<1

example of the latter case. In the final section, we give somgould be straightforwardly deduced by symmetry propeties
concluding remarks. : Considering in phase space the following regisee Fig.
1):
Il. PHASE SPACE ANALYSIS K={VirsV,<1, i=12,.m-1 s<V,=<p,
In this section, we prove that the systdg), (3) [in the
following, this system will be referred by E(R)] has steady
states that define steady patterns in the “physical” space

{Z,R}, where the spatial profile corresponds to the kink dis-Wherer, s, p, andqg are positive parameters between 0 and 1,

we study the orientation of the vector field given by E2).

0<V;<q, i=m+1,.N}, (7

tribution. . . ;
on the boundary of regioK, which will be denoted byK.
A Gradient W of thi ‘ First of all, we note that in the part @i that is formed
- oradient property of this system by planes{V;=1} and{V;=0}, vector field(2) is oriented
Let us first prove the gradient property of this system.inward () since it attracts trajectories from outside, as seen
Introducing the function previously. Considering then the remaining part of the
o1 boundarydK and using Eq(5), we get from Eq.(2) for i
d; Vi =1,2,..m-2:
G=JZl 7(vm—vj)z— fo f(u)du
dv;
d2 W =f(l’)-l—dl(VHl—Zr+Vi,1)>f(r). (8)

N
+'2 , (4) Vi=r
i=m

Vi
?(VHl—Vj)Z— J;) f(U)dU

It follows from Eq. (7) and properties of the functiof(V)

it is simple to check that systert2) can be expressed as . inequality

follows:
dv;

dv; 9G 2Yi
= 5) dt

o,

>0 for VjedK,Vj#i 9)
Vi=r
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is satisfied if parameter e[a,1]. Similarly, for the other
equations of systert?), we find the following inequalities on
boundarydK:

dVp—
d'“ ! =f(r)+dy (Vo= 2r+V,)
tVm—1=r
=f(r)—dqr+d;s,
V
gt ~HEOFdVn =9 +dy(Vii1—9)
V=5
=f(s)—(dy+dy)s+dyr,
dv,
g1 =f(P) = (di+do)p+diVin 1+ doVins
Vi=p
<f(p)—(dy+dy)p+d;+daq,
dv,
G =@V 20+ Vi)
Vim+1=4
<f(q)—dzq+dzp,
dv;
St =H@+daVii—2g+ Vi) =f(q)

Vi=q

for i=m+2,..N. (10

It is clear that, forV;e dK(j=1,2,...N), the following in-
equalities:

dVin—s >0, Vi >0, BV <0,
at |, atl, atl, _,
% <0, d_tl <0, i=m+2,..N
Vm+1=4 Vi=q
(12)

will be satisfied provided that, p, g, ands obey the follow-
ing conditions:

a<r<l1, 0<qg<a, 0Oss<p=l],

f(s)—(d;+dy)s+dqir>0,
(12
f(p)—(dy+dy)p+d;+d,q<0,

f(q)—d,gq+d,p<0.
Taking into account the properties of the functifbfVv), we

find that, in the case€©a<1/2, inequalitieg12) are satisfied
at least for the following region of parameters:

a? a?
[d1>0, d,=< Z] U{dlsz, d2>0}. (13)
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FIG. 2. Partition of the planed( ,d,) for fixeda. Curves(1) and
(2) are estimations of, respectivelgiy; and dg,, according to nu-
merical resolution of Eqs(12) and (13), providing the sufficient
conditions: if d,>dg,, or d,<<dj;, propagation fails. The region
delimited by curvegl) and(2) is calledD, in the text. On the other
hand, C,, corresponds to the homogeneous cdsed,>d*(a).
Then, the dotted lines correspond to a simulation of syst&m
using a fourth-order Runge-Kutta algorithm with an integration
time step 0.001, while the crosses correspond to experimental re-
sults obtained with the nonlinear electrical lattice. The parameters
area=0.3, N=48, m=24.

For fixed a, the inequalitieq13) define some region in the
plane @d,,d,). However, this region can be extended more
exactly thanks to numerical solution of inequalitid®) (see
Fig. 2.

For these parameter values, regiéhexists in phase
space, and the vector field oK is oriented inwards, as
shown by the qualitative view in phase space of Fig. 1. Since
the system(2) has only steady states in phase space, we can
conclude that regioi keeps at least one of the stable steady
states. Taking into account the spatial construction of the
regionK [see Eq(7)] we find that this steady state in region
K defines a steady kink-shape pattern.

Let us denote by, the region in the parameters space of
the system(1.2) defined by the inequalitie€l2). Then nu-
merical resolution of inequalitie€l2) demarcates by solid
lines an hatched regidn, in the (d;,d,) plane of Fig. 2 for
fixed a. Note that the regiod, is an estimation, correspond-
ing to sufficient but not necessary conditions, of critical val-
ues of d;,d,), allowing the pinning of wave fronts. More-
over, for any parameterd(,d,) taken in regionD,,
inequalities(12) are satisfied, that is, the wave front cannot
propagate. On the other hand, in the parameter space of the
system(1.2), there exists the sdd,;=d,, 0<a<1} whose
points are associated with the homogeneous Nagumo equa-
tion. Therefore, in this case, wave fronts propagation is pos-
sible if the parameters of the systdin2) are taken from the
line C,={d,=d;>d*(a),0<a<1/2} (see the Introduc-
tion). Changing the parameters froBy, to D,, we find that
a surfacd’ exists in the parameter space of the sys{érg)
that determines the region of front propagation and its fail-
ure. The surfacd” has been obtained numerically with a
direct simulation of systengl.2). On the plane q;,d,) it
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appears as two curvd§+={d2=d§up(dl,a)} andI'" ={d, V(1) —V(x,1),
=d¥(d,,a)} originated from the common poind,=d; 5
=d*(a) (see dashed curves in Fig). Note that the curve Vi 1(H)—V(x—8,1)=V(x t)—6ﬂ+ 152‘7_V+,,,

I'" is close to the lined,=a?/4 and the region where the - ' ’ ax 27 ox* '
propagation is possible is restricted betw&enandl'*. We (14
denote this region b, (see Fig. 2 2V

o 1 5
Vj+1(t)—>V(X+ 5,)=V(x,t)+ 554’ 5 o W_i_

C. The “nature” of the phenomenon
P Substituting Eq(14) into the system(2) and neglecting the

Let us consider the dynamics of the systé2 for the higher-order terms, we obtain the following system:

parameters taken from,. In this case, besides the spatio- 2

homogeneous stat¢¥;=0} and{V;=1}, j=1,2,...N, there %zf(VHdl&ZiT\Z/, if X<Xq,

also exists at least one spatially inhomogeneous steady state

from region K. This inhomogeneous state attracts at least P 2V (15

those initial distributions/;(0) that are located in the region E:f(v)+d252&?’ if x>Xg,

K. This class of initial conditions i§Z,R} has a kink shape.

Therefore, at variance with the homogeneous ¢&se (1)]  with boundary conditions at the interfage-x

when such distributions evoleee the pointii) in the In-

troductior] to a traveling wave frontkink), in the inhomo- Vv Vv 1%V

geneous Eqg2) the wave front is not systematically estab-  gt| =dy| - 5& B ot 202 _

lished from such initial conditions. Namely, for parameters o o %

taken outsideD,,, wave front propagation failure takes oV 162V

place. +da| 5~ T oE +f(Vin),
Note that propagation failure exists not only for small x=xg X=xg

enough coupling strength between cells, but also when this (16)

coupling strength is large enough, which can be considered

as a paradoxical result, because in this case the homogeneousere x, account forx values to the left and to the right
Nagumo equation permits the front propagation. In fact, thesides, respectively, at=x,. We suppose that the variable
system(2) consists of two parts, namely, two homogeneouss continuous orx, that isV(x, ) = V(Xg ) = Vin;- Then, using
Nagumo subsystems, which have connections in pgint Eq. (15) for steady states, we have

=m. Therefore, when at least one of these two subsystems is 5

in propagation failure conditions, since its coupling coeffi- d; 62— = —F(V(x5))=—f(Viny),

cient is too small, the whole system demonstrates also propa- IX| -

gation failure, and the coupling coefficient of the other sub- 0 17)
system has no importance. If both coupling coefficieshts 2

andd, are large enough, each of single subsystem is free of dzézm =—f(V(xg))=—f(Vinp).

propagation failure. Consequently, in this case, propagation =xg
failure in the whole systent2) is associated with a new ) ) N

It is well known that for large values of coupling coeffi-

cient between cells, discrete reaction-diffusion systems can V|X:X5:V|X:X§'
be described by respective continuous equations to a high (19
i i i Vv aVv
accuracy. In fact, it denotes that we found propagation failure FRiad —g4. 22
even in the continuous case of systén We will now con- R
0 0

sider this case in some details.

Note, that the boundary conditiori$8) are typical for con-

tinuous inhomogeneous systefsse, for example, E§16]).

The steady states of the systéfrb) are determined by the
g-following set of equations:

D. Continuous limit

Let us definex=x, as the spatial coordinate correspon

ing to interface poinf =m. To describe the systefd.2) in a dv

continuous limit, let us change the spatial coordinjate a —=U, &di——=—1(V), Iif x<xo,
continuous variablex=j 8 with & being the spatial lattice dx dx

parameter of the discrete chain. Let us assume that the char- dv ,, d i

acteristic spatial scale of the kink-profile steady state is sig- ax - Y g =—1(V), if x>Xo, (19
nificantly larger than the spatial lattice parameieThen we

can transform variables as follows: where the variablé/ satisfies the conditiondl8).
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N @

b

Wi(B) We(d)

] ®)
FIG. 3. (a) Phase portrait of systeril9 when d;=d,; (b)
Phase portrait of systeid9) for d,#d,.

Let us look for a heteroclinic solution of this system, ex-

hibiting steady states for a kink profile. Whdp=d, and for

PHYSICAL REVIEW E56, 046127 (2002

B 1—V\/3V2+(1—2a)(2V+1) .
- 6d, if Xx<Xo,

B V\/3V2—4(1+a)v+6a . o1
=5 64, if x>xg. (21

Taking 0<V,<1 and putting Eq(21) in Eq. (19), we ob-
tain the following conditions for which the steady state of the
kink-profile exists in systentl5) with boundary conditions
(18):

dy=k(Vindy, (22)
where
(Vin) = Vﬁﬂ[3Vﬁ“—4(1+a)Vint+ 6a]- (23

Consequently, for each value ¥f; in [0, 1] at the interface
X=Xg, there exists a unique steady state of kink profilel, if
and d, are related by Eq(22). Moreover, integrating Egs.
(21) with the boundary condition¥/(—«)=0, V(+»)=1,
and V;0=VX+0=Vim, the profile of this kink wave can be
analytically expressed for each point af;(d,) plane satis-
fying Eq. (22). Furthermore, it is easy to show thiatV;,,)
takes its minimum for allV,,,e[0,1] in V;,=a, that is,
k(a)<k(Vy) for all V;,;#a. Hence, in the continuous limit
the curvel' " is given by

. (1—a)¥1l+a)

sup a3( 2_ a) (24)

19

a<1/2, system(19) has the phase portrait presented in Fig.ang corresponds specifically to the cagg=a.

3(a). In this case, each part of the systéh®) does not pos-
sess any heteroclinic trajectory.

However, taking into account inhomogeneity Xg lets
appear heteroclinic trajectories in systéh9). Looking then
for heteroclinic trajectories connecting the saddhgd,0)
andB(0,0), and the separatri®"(A) andW?(B) located on
the phase planid-ig. 3(b)], we have to find which parameters
allow to satisfy condition$18).

Namely,W!(A) being the unstable separatrix of sadéle
standard calculations lead to

u? v 1
Fdigt | tondn= [ topdn. @0

By replacingf(#) by its expression, we obtain straightfor-
wardly the equation ofW“(A), for x<x,, and similarly for
the stable separatrix of saddieW5(B), whenx>Xxg:

Note that Eq.(24) requires large enough values of the
coefficientsd,; andd, to be in the continuous approximation
(15).

In Fig. 4, the region of existence of stationary kinks is
presented foa=0.44. The comparison between the theoret-
ical calculation[continuous line, Eq(24)] and numerical
simulations(dotted ling shows a good agreement for large
enoughd; andd,, that is, when the continuum approxima-
tion is valid.

Note that we choose hege=0.44 to haved,; andd, of
similar size, then both homogeneous Nagumo subsystems
satisfy the continuum approximation. In fact, as shown by
Fig. 5, the slope(a) of the straight line given by Eq24),
decreases very fast wharvaries from 0 to 1/2. Thusl; and
d, have similar size only if 0.4a<0.5.

Finally, for any point satisfying E¢(24), calculations of
the stationary kink profile can be easily achieved,\Vgs
=a.

It is straightforwardly given by
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FIG. 4. Partition of the planed{,d,) in the continuous limit.
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FIG. 6. Profile of the kink pinned at the interface. Parameters

The experimental results are presented by crosses with their UNCel. 4. —075:005 d.=d* —139+008 N=48 m=24 a
1= Y- . ’ 2= )y -9 I—U. ’ - ’ - ’

tainties, while the solid lines are obtained by E(&!) and(13). In

addition, numerical simulations of systeth.2) appear in dashed

line. The threshold is set to 0.44.

ot
X=Xp 1-a
| arct y{ [ 2 2a—1-2V+aV
arctan
3(1-a) \[a3vZ+(1-2a)(1+2V)
2(1+a) .
+arctan —3 if X<Xg,

(29

/ 2 3a—aVv—-V
arctan -
3a.,/3v2—4V—4aV+6a

d*
x:x0+5\/%)

2(2—a) .
—arctan —3 if Xx=Xg
10}
)
= 102
g 10
al
g
=
3 10
10° . . .
0.1 0.2 03 04 0.5

a (arb. units)

FIG. 5. Slope of the curved?, =k(a)d,. The solid line repre-

sup

sents the slope coefficients obtained by Exfl) while the circles

represent the simulation results.

sup

=0.44. The solid line represents the profile obtained by (28),
while the circles are obtained by numerical simulations and the
crosses correspond to real experiments.

and is compared to simulation results in Fig. 6 in a specific
example, whera=0.44,d,=0.75, andd,=dg,~1.388.

Ill. ELECTRONIC EXPERIMENTS

Our experiments are carried out on an electrical chain,
composed ofN=48 cells (see Fig. 7, including a linear
capacitanceC and a nonlinear resistdy_, whose current-
voltage characteristic obeys the following cubic function
Ine=(VIR))[1—(V/a)][1—-(V/B)]. Here,a and B are the
roots of the characteristic, ang, is a weighting resistor.
Diffusion coupling is assured by linear resistéts namely,
R;=R; for the m=24 first cells, and?;=R, for the 24 last

ones.
Using Kirchhoff laws, we can model the voltage evolution

by the following discrete equations set:

dv; 1
dt R,C

i=1,2,..m—1

¢4

Vi Vi Vi
(Vie1=2Vi+Vi_1)— ROC(l_ )(1— )

R, Vm-l R Vm

I

O
Bl RM%—‘
RN
r

FIG. 7. Sketch of the real electrical lattice. PotentiomefRys
are used to tunel,, allowing experimental determination df;,
anddi;.
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dv, 1 1 IV. CONCLUDING REMARKS
dt  R,C (Vin-2= Vi) + R,C (Vins2= Vi In this paper, we have considered an inhomogeneous
v v v Nagumo system composed of two different homogeneous
- —m( 1— —m> - —m) Nagumo subsystems. Namely, the coupling coeffictgnis
RoC @ B different in the two subsystemd;=d; for j<m and d,
dv. 1 v v v =d, for j>m, m being the interface site. We have studied
— = o= (Vi —2Vi+ Vi) - —'( 1- —') ( 1— _') , theoretically if a front wavea kink) is able to propagate or
dt R,C RoC @ B fails to propagate in the discrete system, and we have shown
i=m+1m+2,..N. (26)  the existence of a windowd;,dg,], for fixed a andd,,

allowing propagation. Outside this window, propagation is
In addition, the end of the chain satisfies Neumann boundarynpossime_ The existence dmf is related to the discreteness
conditionVy=Vy_1. . of the system; besides, d,=d,, we find again the standard
After normalization, namely setting;=V;/B8, d;  results concerning propagation failure in an homogeneous
=aRo/BRy, andd;=aRy/BR,, Eqs.(26) appear to be an  ca5e On the other hand, the existencadff, is more sur-

anaAlgginsi't?;luIggggit?;nsy\s/ﬁg'i)'of each cell is at redf. prising, and we wanted to study if this limit remains even in
’ g ' . . the continuous approximation.

=0, while we set the input voltage to the higher state, that is In this approximation—largerd, and d, values—

V,(t=0)=pB. The coupling coefficientl; being fixed, giv- . . .
ing rise to a wave front along the chain, we analyze versugm_alytlcal calculations cz.in' be led farth.er, *and conf'|rm the
existence of an upper limit ofl,, that isd for kink

the coefficientd, either if the propagation of the front wave sup’
is possible or if it is pinned at the interfa¢enth cell). propagation. Moreover, analytical expressionddf, is in

As for the theoretical study, we will consider separatelngOd agreement with results of numerical simulations made
the purely discrete case and the continuous one. with system(2) before any approximation. In addition, the

1. Case of a purely discrete chainWe use potentiom- kink profile, whend2=d;‘up, is the same in theory and in
etersR, to obtain a precise measure of the critical valdgg ~ numerical simulations. Then, the existenceddf, is not re-
anddj;. In the purely discrete case, the results referred byated to the discreteness of the chain, but comes rather from
crosses in Fig. 2 are qualitatively in good agreement withcontinuity relationg(18). Finally, our study is completed by
numerical simulations of initial equations s&t). As one experiments on an electrical chain consisting in two parts.
could expect, the first bisecting in thel,(,d,) plane, corre- For fixedd; anda, we changed, to measurelj; anddg,,.
sponding to homogeneous media, is located in the regioExperimental results are in good qualitative agreement with
where propagation is possible. Moreover, the first cross at théheoretical predictions and simulations. A slight discrepancy
left bottom, located on the first bisecting is of great interestjs observed quantitatively, but it is due to the components
since this experimental result corresponds, in a homogeneow#certainties and to the experimental nonlinear current-
media, to the measurement of the standard critical vdfue Vvoltage characteristic. The existence af,, extends

under which propagation faifs 2]. Mornev’s study{19] in the discrete case and is confirmed by
2. Chain in the continuum approximationThe same experiments in the continuous one. _ _
chain is now used with smaller values of resist&s and Moreover, recent studies of action potential propagation

R,, that is larger values af, andd,, to be in the continuous N inhomogeneous cardiac tiss(®4,15 has also observed
limit. Figure 4 shows that the experimental results are inthiS Phenomenon. Our theoretical and experimental study

good agreement with numerical simulations and theoreticaf@" P€ in fact useful in research concerning cardiac tissue or
prediction given by Eq(24). The small observed discrep- myelinated fibers or other domains in biology where homo-

ancy is mainly imputable to the experimental current—voltag:jeqenelty IS not standa_rd: in these cases, propagation fa||u_re
can occur due to an inhomogeneous part of the system, in-

characteristic that does not match exactly a cubic law. For o ;
. ) dependently of its discrete or continuous character.
the same reason, the experimental and the theoretical profiles
of the kink pinned at the interface are slightly different in
Fig. 6. The main feature is, however, verified, that is, there
exists a maximal value af,, over which propagation in the
inhomogeneous chain is not possible. Moreover, we note a We would like to thank the Russian Foundation for Basic

good agreement between theoretical analysis, numeric&esearch under Grant No. 00-02-16400 and Russian-French
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