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Wave front propagation failure in an inhomogeneous discrete Nagumo chain:
Theory and experiments
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The phenomenon of wave propagation failure in a discrete inhomogeneous Nagumo equation is investigated.
It is found that the propagation failure occurs not only for small coupling coefficients but as well for an abrupt
change of the interelement coupling. The investigation includes the study of the phase space of the system,
numerical simulations, and real experiments with a nonlinear electrical lattice.
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I. INTRODUCTION

Systems composed of a large number of ordered in sp
interacting active subsystems, that is, active networks, a
in the study of many spatiotemporal phenomena in phys
chemistry, biophysics, technique, and so on. Take, for
stance, arrays of Josephson junctions@1#, arrays of coupled
lasers@2#, chains of coupled chemical reactors@3#, nonlinear
synchronization arrays@4#, assemblies of biological oscilla
tors @5#, etc. The problems of pattern formation and prop
gation of nonlinear waves in active networks are widely
vestigated, as, for example, wave front dynamics in disc
bistable systems@6–11#.

These systems are often modeled by the following w
known discrete Nagumo equations:

V̇j5d~Vj 1122Vj1Vj 21!1 f ~Vj !, j 51,2,...,m21
~1!

with the dot accounting for the time derivative,j defining a
space lattice point (j PZ) or discrete space coordinate,d
being the coupling coefficient, while the cubic functionf (V)
is given by

f ~V!5V~V21!~a2V!, 0,a,1.

The basic properties of Eq.~1! are the following:
~i! There exists a critical value of the coupling coefficie

d5d* (a), below which, i.e.,d<d* (a) the wave fronts fail
to propagate, this phenomenon being known as the w
front propagation failure@6,12,13#.

~ii ! The propagation of wave fronts~kinks and antikinks!
is possible only ford.d* (a), the fronts emerging from a
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wide class of initial conditions. In particular, the initial con
ditions defining in$Z,R% kink-shape distributions belong t
this class.

The existence of wave propagation failure is a charac
istic feature of the discrete Nagumo equation, since this p
nomenon does not occur in the continuous version of
Nagumo equation.

However, one might wonder how spatial inhomogeneit
in a lattice described by a continuous or discrete Nagu
equation may influence the propagation failure conditio
Namely, in this paper, we consider an inhomogene
Nagumo equation consisting in two homogeneous Nagu
subsystems connected at sitem and described by the follow
ing set of coupled nonlinear equations:

dVj

dt
5d1~Vj 1122Vj1Vj 21!1 f ~Vj !, j 51,2,...,m21

dVm

dt
5d1~Vm212Vm!1d2~Vm112Vm!1 f ~Vm!, ~2!

dVj

dt
5d2~Vj 1122Vj1Vj 21!1 f ~Vj !,

j 5m11,m12,...,N.

In the system~2!, coupling coefficients between cells tak
two valuesd1 and d2 , according to the indexj defining a
space pointj 51,2,...,N.

We note that in the special cased15d25d, the system~2!
simply becomes an homogeneous discrete Nagumo equ
~1! with the above described properties.

For the boundaries of the system~2!, we impose zero-flux
or Neumann conditions, that is, forj 51 or j 5N, respec-
tively,
©2002 The American Physical Society27-1
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V1~ t !5V2~ t ! and VN~ t !5VN21~ t !. ~3!

Such model, for example, plays an important role in und
standing the action potential propagation in inhomogene
cardiac tissues@14,15# and in inhomogeneous nerve fibe
@16–18#. Indeed, in myelinated nerve fibers the membra
activity is localized mostly in Ranvier nodes coupled by m
elinated ~passive! parts of the fiber. The inhomogeneitie
may be induced by variations of the diameter, changes
electrical properties, branching, and so on. Here, we
consider first the case of an inhomogeneous discrete Nag
equation, then an inhomogeneous continuous one, both
scribing the propagation of excitation in a fiber with varyin
diameter. Note that our contribution based on phase pla
analysis concerning the inhomogeneous continuous c
completes the study presented in Ref.@19#.

The main result presented in this paper is the followin
considering a kink propagating in the first Nagumo sublatt
with coupling d1 , the propagation through the interfac
separating the two sublattices will be possible only if t
coupling coefficientd2 in the second sublattice stays in th
range @dinf* (d1 ,a),dsup* (d1 ,a)#. The paper is organized a
follows. Section II is devoted first to theoretical studies in
purely discrete inhomogeneous system, where spe
(d1 ,d2) sets allow to exhibit propagation failure. We sho
then that the pinning of the front wave may also be poss
even in a continuous inhomogeneous system. In this casedinf*
vanishes to 0, and an analytical relation fordsup* (d1 ,a) is
given. In Sec. III, we describe the experiments and pres
the results concerning the propagation failure in an inhom
geneous system, either in the discrete or in the continu
case. The shape of the pinned wave is given in a spe
example of the latter case. In the final section, we give so
concluding remarks.

II. PHASE SPACE ANALYSIS

In this section, we prove that the system~2!, ~3! @in the
following, this system will be referred by Eq.~2!# has steady
states that define steady patterns in the ‘‘physical’’ sp
$Z,R%, where the spatial profile corresponds to the kink d
tribution.

A. Gradient property of this system

Let us first prove the gradient property of this syste
Introducing the function

G5 (
j 51

m21 Fd1

2
~Vj 112Vj !

22E
0

Vj
f ~u!duG

1 (
j 5m

N Fd2

2
~Vj 112Vj !

22E
0

Vj
f ~u!duG , ~4!

it is simple to check that system~2! can be expressed a
follows:

dVj

dt
52

]G

]Vj
. ~5!
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Hence, it is a gradient one and only steady states can e
@20# in the phase spaceRN of the system~2!.

B. Absorbing region and stationary kink pattern

For determining the positions of the steady states of
system~2!, let us introduce in phase space the regionV such
asV5$V:0<Vj<1, j 51,2,...,N%.

By analogy with references@11,21#, we can prove that all
trajectories of system~2! with initial conditions outside ofV
tend to it. Consequently, all steady states of system~2! be-
long to regionV. As a result, we can consider system~2!
only in regionV and hold that

0<Vj<1 for t.0 and j 51,2,...N. ~6!

Let us now give more precisely invariant domains for t
system~2!. From now on, and for a sake of clarity we choo
the parametera to be smaller than 1/2~the case 1/2,a,1
could be straightforwardly deduced by symmetry propertie!.

Considering in phase space the following region~see Fig.
1!:

K5$V:r<Vi<1, i 51,2,...,m21 s<Vm<p,

0<Vi<q, i 5m11,...,N%, ~7!

wherer, s, p, andq are positive parameters between 0 and
we study the orientation of the vector field given by Eq.~2!
on the boundary of regionK, which will be denoted by]K.

First of all, we note that in the part of]K that is formed
by planes$Vj51% and $Vj50%, vector field~2! is oriented
inward V since it attracts trajectories from outside, as se
previously. Considering then the remaining part of t
boundary]K and using Eq.~5!, we get from Eq.~2! for i
51,2,...,m22:

dVi

dt U
Vi5r

5 f ~r !1d1~Vi 1122r 1Vi 21!> f ~r !. ~8!

It follows from Eq. ~7! and properties of the functionf (V)
that inequality

dVj

dt U
Vi5r

.0 for VjP]K,; j Þ i ~9!

FIG. 1. Qualitative representation of regionK.
7-2
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is satisfied if parameterr P@a,1#. Similarly, for the other
equations of system~2!, we find the following inequalities on
boundary]K:

dVm21

dt U
Vm215r

5 f ~r !1d1~Vm2222r 1Vm!

> f ~r !2d1r 1d1s,

dVm

dt U
Vm5s

5 f ~s!1d1~Vm212s!1d2~Vm112s!

> f ~s!2~d11d2!s1d1r ,

dVm

dt U
Vm5p

5 f ~p!2~d11d2!p1d1Vm211d2Vm11

< f ~p!2~d11d2!p1d11d2q,

dVm11

dt U
Vm115q

5 f ~q!1d2~Vm22q1Vm12!

< f ~q!2d2q1d2p,

dVi

dt U
Vi5q

5 f ~q!1d2~Vi 2122q1Vi 11!< f ~q!

for i 5m12,...,N. ~10!

It is clear that, forVjP]K( j 51,2,...,N), the following in-
equalities:

dVm21

dt U
Vm215r

.0,
dVm

dt U
Vm5s

.0,
dVm

dt U
Vm5p

,0,

dVm11

dt U
Vm115q

,0,
dVi

dt U
Vi5q

,0, i 5m12,...,N

~11!

will be satisfied provided thatr, p, q, ands obey the follow-
ing conditions:

a,r ,1, 0,q,a, 0<s,p<1,

f ~s!2~d11d2!s1d1r .0,
~12!

f ~p!2~d11d2!p1d11d2q,0,

f ~q!2d2q1d2p,0.

Taking into account the properties of the functionf (V), we
find that, in the case 0,a,1/2, inequalities~12! are satisfied
at least for the following region of parameters:

H d1.0, d2<
a2

4 J øH d1<
a2

4
, d2.0J . ~13!
04612
For fixed a, the inequalities~13! define some region in the
plane (d1 ,d2). However, this region can be extended mo
exactly thanks to numerical solution of inequalities~12! ~see
Fig. 2!.

For these parameter values, regionK exists in phase
space, and the vector field on]K is oriented inwards, as
shown by the qualitative view in phase space of Fig. 1. Si
the system~2! has only steady states in phase space, we
conclude that regionK keeps at least one of the stable stea
states. Taking into account the spatial construction of
regionK @see Eq.~7!# we find that this steady state in regio
K defines a steady kink-shape pattern.

Let us denote byDa the region in the parameters space
the system~1.2! defined by the inequalities~12!. Then nu-
merical resolution of inequalities~12! demarcates by solid
lines an hatched regionDa in the (d1 ,d2) plane of Fig. 2 for
fixed a. Note that the regionDa is an estimation, correspond
ing to sufficient but not necessary conditions, of critical v
ues of (d1 ,d2), allowing the pinning of wave fronts. More
over, for any parameter (d1 ,d2) taken in region Da ,
inequalities~12! are satisfied, that is, the wave front cann
propagate. On the other hand, in the parameter space o
system~1.2!, there exists the set$d15d2, 0,a,1% whose
points are associated with the homogeneous Nagumo e
tion. Therefore, in this case, wave fronts propagation is p
sible if the parameters of the system~1.2! are taken from the
line Ch5$d25d1.d* (a), 0,a,1/2% ~see the Introduc-
tion!. Changing the parameters fromCh to Da , we find that
a surfaceG exists in the parameter space of the system~1.2!
that determines the region of front propagation and its f
ure. The surfaceG has been obtained numerically with
direct simulation of system~1.2!. On the plane (d1 ,d2) it

FIG. 2. Partition of the plane (d1 ,d2) for fixeda. Curves~1! and
~2! are estimations of, respectively,dinf* and dsup* according to nu-
merical resolution of Eqs.~12! and ~13!, providing the sufficient
conditions: if d2.dsup* or d2,dinf* , propagation fails. The region
delimited by curves~1! and~2! is calledDa in the text. On the other
hand, Ch corresponds to the homogeneous cased15d2.d* (a).
Then, the dotted lines correspond to a simulation of system~1!
using a fourth-order Runge-Kutta algorithm with an integrati
time step 0.001, while the crosses correspond to experimenta
sults obtained with the nonlinear electrical lattice. The parame
area50.3, N548, m524.
7-3
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appears as two curvesG15$d25dsup* (d1 ,a)% andG25$d2

5dinf* (d1 ,a)% originated from the common pointd25d1

5d* (a) ~see dashed curves in Fig. 2!. Note that the curve
G2 is close to the lined25a2/4 and the region where th
propagation is possible is restricted betweenG2 andG1. We
denote this region byDpr ~see Fig. 2!.

C. The ‘‘nature’’ of the phenomenon

Let us consider the dynamics of the system~2! for the
parameters taken fromDa . In this case, besides the spati
homogeneous states$Vj50% and$Vj51%, j 51,2,...,N, there
also exists at least one spatially inhomogeneous steady
from region K. This inhomogeneous state attracts at le
those initial distributionsVj (0) that are located in the regio
K. This class of initial conditions in$Z,R% has a kink shape
Therefore, at variance with the homogeneous case@Eq. ~1!#
when such distributions evolve@see the point~ii ! in the In-
troduction# to a traveling wave front~kink!, in the inhomo-
geneous Eqs.~2! the wave front is not systematically esta
lished from such initial conditions. Namely, for paramete
taken outsideDpr , wave front propagation failure take
place.

Note that propagation failure exists not only for sm
enough coupling strength between cells, but also when
coupling strength is large enough, which can be conside
as a paradoxical result, because in this case the homogen
Nagumo equation permits the front propagation. In fact,
system~2! consists of two parts, namely, two homogeneo
Nagumo subsystems, which have connections in poinj
5m. Therefore, when at least one of these two subsystem
in propagation failure conditions, since its coupling coe
cient is too small, the whole system demonstrates also pr
gation failure, and the coupling coefficient of the other su
system has no importance. If both coupling coefficientsd1
andd2 are large enough, each of single subsystem is fre
propagation failure. Consequently, in this case, propaga
failure in the whole system~2! is associated with a new
reason, related with inhomogeneity of system~2!.

It is well known that for large values of coupling coeffi
cient between cells, discrete reaction-diffusion systems
be described by respective continuous equations to a
accuracy. In fact, it denotes that we found propagation fail
even in the continuous case of system~2!. We will now con-
sider this case in some details.

D. Continuous limit

Let us definex5x0 as the spatial coordinate correspon
ing to interface pointj 5m. To describe the system~1.2! in a
continuous limit, let us change the spatial coordinatej to a
continuous variablex5 j d with d being the spatial lattice
parameter of the discrete chain. Let us assume that the c
acteristic spatial scale of the kink-profile steady state is
nificantly larger than the spatial lattice parameterd. Then we
can transform variables as follows:
04612
ate
t

l
is
d

ous
e
s

is
-
a-
-

of
n

n
gh
e

-

ar-
-

Vj~ t !→V~x,t !,

Vj 21~ t !→V~x2d,t !5V~x,t !2d
]V

]x
1

1

2
d2

]2V

]x2 1¯ ,

~14!

Vj 11~ t !→V~x1d,t !5V~x,t !1d
]V

]x
1

1

2
d2

]2V

]x2 1¯ .

Substituting Eq.~14! into the system~2! and neglecting the
higher-order terms, we obtain the following system:

]V

]t
5 f ~V!1d1d2

]2V

]x2 , if x,x0 ,

~15!
]V

]t
5 f ~V!1d2d2

]2V

]x2 , if x.x0 ,

with boundary conditions at the interfacex5x0

]V

]t U
x5x0

5d1S 2d
]V

]xU
x5x

0
2

1
1

2

]2V

]x2U
x5x

0
2D

1d2S d
]V

]xU
x5x

0
1

1
1

2

]2V

]x2U
x5x

0
1D 1 f ~Vint!,

~16!

where x0
6 account forx values to the left and to the righ

sides, respectively, atx5x0 . We suppose that the variableV
is continuous onx, that isV(x0

2)5V(x0
1)5Vint . Then, using

Eq. ~15! for steady states, we have

d1d2
]2V

]x2U
x5x

0
2

52 f „V~x0
2!…52 f ~Vint!,

~17!

d2d2
]2V

]x2U
x5x

0
1

52 f „V~x0
1!…52 f ~Vint!.

Using Eqs.~16! and~17! we obtain the boundary condition

Vux5x
0
25Vux5x

0
1,

~18!

d1

]V

]xU
x5x

0
2

5d2

]V

]xU
x5x

0
1

.

Note, that the boundary conditions~18! are typical for con-
tinuous inhomogeneous systems~see, for example, Eq.@16#!.
The steady states of the system~15! are determined by the
following set of equations:

dV

dx
5U, d2d1

dU

dx
52 f ~V!, if x,x0 ,

dV

dx
5U, d2d2

dU

dx
52 f ~V!, if x.x0 , ~19!

where the variableV satisfies the conditions~18!.
7-4
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Let us look for a heteroclinic solution of this system, e
hibiting steady states for a kink profile. Whend15d2 and for
a,1/2, system~19! has the phase portrait presented in F
3~a!. In this case, each part of the system~19! does not pos-
sess any heteroclinic trajectory.

However, taking into account inhomogeneity inx0 lets
appear heteroclinic trajectories in system~19!. Looking then
for heteroclinic trajectories connecting the saddlesA(1,0)
andB(0,0), and the separatrixWu(A) andWs(B) located on
the phase plane@Fig. 3~b!#, we have to find which parameter
allow to satisfy conditions~18!.

Namely,Wu(A) being the unstable separatrix of saddleA,
standard calculations lead to

d2d1

U2

2
1E

a

V

f ~h!dh5E
a

1

f ~h!dh. ~20!

By replacing f (h) by its expression, we obtain straightfo
wardly the equation ofWu(A), for x,x0 , and similarly for
the stable separatrix of saddleB Ws(B), whenx.x0 :

FIG. 3. ~a! Phase portrait of system~19! when d15d2 ; ~b!
Phase portrait of system~19! for d1Þd2 .
04612
.

U52
12V

d
A3V21~122a!~2V11!

6d1
if x,x0 ,

U52
V

d
A3V224~11a!V16a

6d2
if x.x0 . ~21!

Taking 0,Vint,1 and putting Eq.~21! in Eq. ~19!, we ob-
tain the following conditions for which the steady state of t
kink-profile exists in system~15! with boundary conditions
~18!:

d25k~Vint!d1 , ~22!

where

k~Vint!511
122a

Vint
2 @3Vint

2 24~11a!Vint16a#
. ~23!

Consequently, for each value ofVint in @0, 1# at the interface
x5x0 , there exists a unique steady state of kink profile, ifd1
and d2 are related by Eq.~22!. Moreover, integrating Eqs
~21! with the boundary conditionsV(2`)50, V(1`)51,
and Vx0

2 5Vx0

1 5Vint , the profile of this kink wave can be

analytically expressed for each point of (d1 ,d2) plane satis-
fying Eq. ~22!. Furthermore, it is easy to show thatk(Vint)
takes its minimum for allVintP@0,1# in Vint5a, that is,
k(a),k(Vint) for all VintÞa. Hence, in the continuous limi
the curveG1 is given by

dsup* 5
~12a!3~11a!

a3~22a!
d1 , ~24!

and corresponds specifically to the caseVint5a.
Note that Eq.~24! requires large enough values of th

coefficientsd1 andd2 to be in the continuous approximatio
~15!.

In Fig. 4, the region of existence of stationary kinks
presented fora50.44. The comparison between the theor
ical calculation @continuous line, Eq.~24!# and numerical
simulations~dotted line! shows a good agreement for larg
enoughd1 andd2 , that is, when the continuum approxima
tion is valid.

Note that we choose herea50.44 to haved1 and d2 of
similar size, then both homogeneous Nagumo subsyst
satisfy the continuum approximation. In fact, as shown
Fig. 5, the slopek(a) of the straight line given by Eq.~24!,
decreases very fast whena varies from 0 to 1/2. Thus,d1 and
d2 have similar size only if 0.4,a,0.5.

Finally, for any point satisfying Eq.~24!, calculations of
the stationary kink profile can be easily achieved, asVint
5a.

It is straightforwardly given by
7-5
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x5x01dA d1

12a

3FarctanhSA 2

3~12a!

2a2122V1aV

A3V21~122a!~112V!
D

1arctanhSA2~11a!

3 D G if x<x0 ,

~25!

x5x01dAdsup*

a FarctanhSA 2

3a

3a2aV2V

A3V224V24aV16a
D

2arctanhSA2~22a!

3 D G if x>x0

FIG. 4. Partition of the plane (d1 ,d2) in the continuous limit.
The experimental results are presented by crosses with their u
tainties, while the solid lines are obtained by Eqs.~24! and~13!. In
addition, numerical simulations of system~1.2! appear in dashed
line. The thresholda is set to 0.44.

FIG. 5. Slope of the curvesdsup* 5k(a)d1 . The solid line repre-
sents the slope coefficients obtained by Eq.~24! while the circles
represent the simulation results.
04612
and is compared to simulation results in Fig. 6 in a spec
example, whena50.44,d150.75, andd25dsup* 51.388.

III. ELECTRONIC EXPERIMENTS

Our experiments are carried out on an electrical cha
composed ofN548 cells ~see Fig. 7!, including a linear
capacitanceC and a nonlinear resistorRNL , whose current-
voltage characteristic obeys the following cubic functi
I NL5(V/R0)@12(V/a)#@12(V/b)#. Here,a andb are the
roots of the characteristic, andR0 is a weighting resistor.
Diffusion coupling is assured by linear resistorsRi , namely,
Ri5R1 for the m524 first cells, andRi5R2 for the 24 last
ones.

Using Kirchhoff laws, we can model the voltage evolutio
by the following discrete equations set:

dVi

dt
5

1

R1C
~Vi 1122Vi1Vi 21!2

Vi

R0C S 12
Vi

a D S 12
Vi

b D ,

i 51,2,...,m21

er-
FIG. 6. Profile of the kink pinned at the interface. Paramet

are d150.7560.05, d25dsup* 51.3960.08, N548, m524, a
50.44. The solid line represents the profile obtained by Eq.~25!,
while the circles are obtained by numerical simulations and
crosses correspond to real experiments.

FIG. 7. Sketch of the real electrical lattice. PotentiometersR2

are used to tuned2 , allowing experimental determination ofdsup*
anddinf* .
7-6
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WAVE FRONT PROPAGATION FAILURE IN AN . . . PHYSICAL REVIEW E66, 046127 ~2002!
dVm

dt
5

1

R1C
~Vm212Vm!1

1

R2C
~Vm112Vm!

2
Vm

R0C S 12
Vm

a D S 12
Vm

b D ,

dVi

dt
5

1

R2C
~Vi 1122Vi1Vi 21!2

Vi

R0C S 12
Vi

a D S 12
Vi

b D ,

i 5m11,m12,...,N. ~26!

In addition, the end of the chain satisfies Neumann bound
conditionVN5VN21 .

After normalization, namely settingv i5Vi /b, d1
5aR0 /bR1 , andd25aR0 /bR2 , Eqs.~26! appear to be an
analog simulation of system~1.2!.

As initial condition, voltage of each cell is at rest,Vi
50, while we set the input voltage to the higher state, tha
V1(t>0)[b. The coupling coefficientd1 being fixed, giv-
ing rise to a wave front along the chain, we analyze ver
the coefficientd2 either if the propagation of the front wav
is possible or if it is pinned at the interface~mth cell!.

As for the theoretical study, we will consider separate
the purely discrete case and the continuous one.

1. Case of a purely discrete chain.We use potentiom-
etersR2 to obtain a precise measure of the critical valuesdsup*
anddinf* . In the purely discrete case, the results referred
crosses in Fig. 2 are qualitatively in good agreement w
numerical simulations of initial equations set~2!. As one
could expect, the first bisecting in the (d1 ,d2) plane, corre-
sponding to homogeneous media, is located in the reg
where propagation is possible. Moreover, the first cross at
left bottom, located on the first bisecting is of great intere
since this experimental result corresponds, in a homogen
media, to the measurement of the standard critical valued*
under which propagation fails@12#.

2. Chain in the continuum approximation.The same
chain is now used with smaller values of resistorsR1 and
R2 , that is larger values ofd1 andd2 , to be in the continuous
limit. Figure 4 shows that the experimental results are
good agreement with numerical simulations and theoret
prediction given by Eq.~24!. The small observed discrep
ancy is mainly imputable to the experimental current-volta
characteristic that does not match exactly a cubic law.
the same reason, the experimental and the theoretical pro
of the kink pinned at the interface are slightly different
Fig. 6. The main feature is, however, verified, that is, th
exists a maximal value ofd2 , over which propagation in the
inhomogeneous chain is not possible. Moreover, we no
good agreement between theoretical analysis, nume
simulations of Eq.~2! and experimental results.
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IV. CONCLUDING REMARKS

In this paper, we have considered an inhomogene
Nagumo system composed of two different homogene
Nagumo subsystems. Namely, the coupling coefficientdj is
different in the two subsystemsdj5d1 for j <m and dj

5d2 for j .m, m being the interface site. We have studie
theoretically if a front wave~a kink! is able to propagate o
fails to propagate in the discrete system, and we have sh
the existence of a window@dinf* ,dsup* #, for fixed a and d1 ,
allowing propagation. Outside this window, propagation
impossible. The existence ofdinf* is related to the discretenes
of the system; besides, ifd25d1 , we find again the standar
results concerning propagation failure in an homogene
case. On the other hand, the existence ofdsup* is more sur-
prising, and we wanted to study if this limit remains even
the continuous approximation.

In this approximation—largerd1 and d2 values—
analytical calculations can be led farther, and confirm
existence of an upper limit ofd2 , that is dsup* , for kink
propagation. Moreover, analytical expression ofdsup* is in
good agreement with results of numerical simulations m
with system~2! before any approximation. In addition, th
kink profile, whend25dsup* , is the same in theory and in
numerical simulations. Then, the existence ofdsup* is not re-
lated to the discreteness of the chain, but comes rather f
continuity relations~18!. Finally, our study is completed by
experiments on an electrical chain consisting in two pa
For fixedd1 anda, we changed2 to measuredinf* anddsup* .
Experimental results are in good qualitative agreement w
theoretical predictions and simulations. A slight discrepan
is observed quantitatively, but it is due to the compone
uncertainties and to the experimental nonlinear curre
voltage characteristic. The existence ofdsup* extends
Mornev’s study@19# in the discrete case and is confirmed
experiments in the continuous one.

Moreover, recent studies of action potential propagat
in inhomogeneous cardiac tissue@14,15# has also observed
this phenomenon. Our theoretical and experimental st
can be in fact useful in research concerning cardiac tissu
myelinated fibers or other domains in biology where hom
geneity is not standard: in these cases, propagation fa
can occur due to an inhomogeneous part of the system
dependently of its discrete or continuous character.
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